Domain-Theoretic Formulation of Linear Boundary Value Problems

نویسنده

  • Dirk Pattinson
چکیده

We present a domain theoretic framework for obtaining exact solutions of linear boundary value problems. Based on the domain of compact real intervals, we show how to approximate both a fundamental system and a particular solution up to an arbitrary degree of accuracy. The boundary conditions are then satisfied by solving a system of imprecisely given linear equations at every step of the approximation. By restricting the construction to effective bases of the involved domains, we not only obtain results on the computability of boundary value problems, but also directly implementable algorithms, based on proper data types, that approximate solutions up to an arbitrary degree of accuracy. As these data types are based on rational numbers, no numerical errors are incurred in the computation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Value Problems in Generalized Thermodiffusive Elastic Medium

In the present study, the boundary value problems in generalized thermodiffusive elastic medium has been investigated as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. As an application of t...

متن کامل

A General Boundary Element Formulation for The Analysis of Viscoelastic Problems

The analysis of viscoelastic materials is one of the most important subjects in engineering structures. Several works have been so far made for the integral equation methods to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin viscoelastic...

متن کامل

Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...

متن کامل

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

Solutions for some non-linear fractional differential equations with boundary value problems

In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators.  Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005